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Abstract

In the paper, the microplane material model for concrete based on the relaxed kinematic constraint is presented. The
model is aimed to be used for three-dimensional damage and fracture analysis of concrete and reinforced concrete
structures in the framework of smeared crack approach. In the microplane model, the material is characterized by a
relation between the stress and strain components on planes of various orientations. These planes may be imagined to
represent the damage planes or weak planes in the microstructure, such as contact layers between aggregate pieces in
concrete. The tensorial invariance restrictions need not be directly enforced. They are automatically satisfied by su-
perimposing in a suitable manner the responses from all the microplanes. To realistically model concrete under com-
pressive load, for each microplane, the total strain tensor has to be decomposed into the normal (volumetric and
deviatoric) and shear strain component. It is shown that for dominant tensile load the decomposition of the normal
microplane strain into volumetric and deviatoric part, together with the fact that the tensile strength of concrete is an
order of magnitude smaller than it’s compressive strength, leads to unrealistic model response. To keep the conceptual
simplicity, the model is improved in the framework of the kinematic microplane theory, however, the kinematic con-
straint at the microplane level is relaxed. The proposed approach finds its physical background in the discontinuity of
the strain field. It is demonstrated that the improved model correctly predicts the concrete response for dominant tensile
load. The implementation of the initial anisotropy and the modeling of concrete for cyclic loading is also discussed.
Comparison with a number of test data for different stress—strain histories shows a good agreement. The model has been
recently implemented into a two- and three-dimensional finite element code and coupled with the localization limiter of
local (crack band) and nonlocal integral type. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In recent years, a significant effort in modeling of concrete-like materials for general stress—strain his-
tories has been expended. Presently the available models for concrete can roughly be classified into two
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categories: (1) macroscopic models, in which the material behavior is considered to be an average response
of a rather complex microstructural stress transfer mechanism and (2) the microscopic models, where the
micromechanics of deformations is described by stress—strain relations on the microlevel. No doubt, from
the physical point of view, more promising are microscopic models. However, they are computationally
extremely demanding. Therefore, in practical applications we have to use macroscopic models.

At the macroscale, the model has to correctly describe microstructural phenomena such as cohesion,
friction and aggregate interlock. These phenomena make the consumption of energy, which is released as a
consequence of cracking, possible. They are microstructural (volume) and not point material properties.
Consequently, the macroscopic models have to be related to the characteristic volume in which these
phenomena take place i.e. they have to be nonlocal (Pijaudier-Cabot and Bazant, 1987; Bazant, 1991; de
Borst, 1991; Ozbolt and Bazant, 1996). From the microscopic point of view (micro models), the nonlocality
has no meaning. However, the same as the macroscopic model, itself, the nonlocality is an important tool
(concept, model, etc.) which makes representation of the microscopic phenomena on the macroscale re-
alistic. The problems of nonlocality and regularization procedures are beyond the scope of the present
paper and are not discussed here in detail.

The evolution of damage (cracking) is closely related to the structure geometry and its size. Due to the
fact that the material testing is performed on specimens of a finite size (structures), from experimental
results it is difficult to filter out the macroscopic material properties. Typical example is the uniaxial
compressive test. As soon as the peak load is reached (approximately uniaxial compressive strength), a
number of vertical or inclined cracks arise. The specimen (structure) fails after smaller cracks result into one
(or more) diagonal-shear-splitting crack(s), whose propagation is controlled by the specimen size and
boundary conditions. In the critical (the weakest) cross section (crack plane), the material ruptures i.e.
discontinuous change of the strain field takes place (continuum — discontinuum). Perpendicular to the
discontinuity plane as well as in the three-dimensional space around it, the stresses and strains relax (un-
load) approximately to zero (Fig. 1).

Traditionally, the macroscopic models are formulated by total or incremental formulation between the
o; and g; components of the stress and strain tensor, using the theory of tensorial invariants (Chen and
Chen, 1975; Willam and Warnke, 1974; Gerstle et al., 1980; Gerstle, 1981; Ortiz, 1985). In the framework of
the theory, there are various possible approaches for modeling of concrete, such as plasticity, plastic-
fracturing theory, continuum damage mechanics, endocronic theory and their various combinations. Due
to the complexity of the concrete, presently exists no model based on the stress and strain tensor and their
invariants which is capable to realistically predict the behavior of concrete, not only for the three-
dimensional monotonic loading, but also for the general three-dimensional cyclic loading. For instance, the
invariant type of the models have difficulties with correct modeling of concrete expansion for triaxial
compressive load, which in some applications governs the failure mechanism and is a consequence of
cracking (discontinuity). Such models are based on the continuum mechanics and are generally not capable
to simulate complex stress—strain states, which involve cracking, using only a few available invariants.
Moreover, based on the plasticity type of the flow rules, which is most commonly in these models used, it is

Crack

Unloading zones

Q
R
EEREEE

Q

Fig. 1. Material unloading zones around the crack surface.
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difficult to model complex three-dimensional cyclic response of concrete. These, as well some other
drawbacks of the constitutive laws based on the theory of tensorial invariants is the main motivation for the
use of the microplane theory as an alternative approach for macroscopic modeling of concrete.

2. Microplane material model

In the microplane model, the material is characterized by a relation between the stress and strain
components on planes of various orientations. These planes may be imagined to represent the damage
planes or weak planes in the microstructure, such as contact layers between aggregate pieces in concrete
(Fig. 2). In the model, the tensorial invariance restrictions need not be directly enforced. They are auto-
matically satisfied by superimposing in a suitable manner, the responses from all the microplanes. Basic
concept behind the microplane model was advanced (G.I. Taylor, 1938) and developed in detail for
plasticity (Batdorf and Budianski, 1949), under the name “slip theory of plasticity’. Later, the model was
extended by BaZzant and co-workers for modeling of quasi-brittle materials, which exhibit softening (Bazant
and Gambarova, 1984; Bazant and Prat, 1988; Bazant and Ozbolt, 1990; Carol et al., 1992; Bazant et al.,
1996a.b, 1998). For hardening the materials, it was assumed that the stress vector which acts on various
planes in the material (slip plane) was the projection of the macroscopic stress tensor (static constraint). To
provide a unique solution for the softening materials, it was realized (Bazant, 1984) that the static con-
straint needed to be replaced by the kinematic constraint, where the microplane strain components are
calculated as the projection of the macroscopic strain tensor.

The advanced kinematic constraint version of the model for concrete was developed by Bazant and Prat
(1988) and later extended to a general cyclic form with the rate sensitivity by Ozbolt and Bazant (1992).
This model has been implemented into the two- and three-dimensional nonlocal finite element code and
rather broad experience has been gained with it so far. Let us first summarize some of its qualities: (i) The
main advantage of the model is its conceptual simplicity i.e. only a set of uniaxial stress—strain curves on the
microplane need to be defined and the macroscopic model response comes automatically out as a result of
the numerical integration over a number of microplanes; (ii) the model covers full three-dimensional range
of applicability; (iii) it is relatively easy to account for the initial anisotropy; (iv) the comparison between
the test data and the model response for different stress—strain histories demonstrated a good agreement

(a)

Aggregate Microplane

Fig. 2. Microplane model: (a) load transfer over a number of idealized contact planes and (b) decomposition of the total macroscopic
strain tensor on the microplane.
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(Bazant and Prat, 1988; Bazant and Ozbolt, 1990; Bazant et al., 1996a,b, 1998); (v) implementation in the
finite element code and a number of numerical studies that have been carried out have indicated the ca-
pability of the model in realistic prediction of concrete behavior. However, for dominant tensile damage
(tensile softening), the model exhibits pathological behavior which is manifested by unrealistic lateral ex-
pansion.

To model concrete for dominant compressive load realistically and to control the initial elastic value of
Poisson’s ratio, in Bazant and Prat’s model, the normal microplane component is decomposed into volu-
metric and deviatoric part. Moreover, the deviatoric compressive strength as well as the shear strength need
to be set roughly 10 times larger than the volumetric and deviatoric tensile strength. As shown by Jirasek
(1993), the main reason for pathological behavior of Bazant and Prat’s microplane model subjected to
tension is related to the split of the normal microplane component into volumetric and deviatoric part and
not to the kinematic constraint itself. To demonstrate why the problem arises only for tensile load, let us
consider a specimen loaded in uniaxial tension (plane stress state, Fig. 3a). For simplicity reasons only two
microplanes (x and y) are considered. Plane x is oriented in the load direction and plane y is perpendicular
to it. According to Bazant and Prat’s model, the normal microplane stress and strain component in the
plane y (on,, én,) is split into volumetric (av, &év) and deviatoric (op,, ep,) part:

ENy = &v T+ &Dy, ONy = Ov 1+ 0Dy, (1a)
with
g, =on, = 0. (1b)
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Fig. 3. Volumetric and deviatoric microplane strain components for simple two-plane microplane model: (a) microplanes loaded in
uniaxial tension (plane stress) and (b) volumetric and deviatoric stress—strain components.
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The volumetric and deviatoric strain component on the plane y are for the linear elastic response (ap-
proximately point 1, Fig. 3b):

ev = 1/3(1 = 2v)e,, epy = —1/3(1 +v)e,, (2)

where v is Poisson’s ratio and ¢,, the total strain in the direction of the applied tensile load. From Eq. (2), it
follows that for &, > 0, the deviatoric stress and strain components of plane y are negative (compression, see
Fig. 3b). In the crack state the load reduces to zero (¢, — +00; ¢ = g, = 0). Consequently, the volumetric
stress reduces to zero as well (oy = 0). From Eq. (1) is then obvious that op, = 0. In BaZant and Prat’s
model, the volumetric and deviatoric stresses for virgin loading are calculated as

oy = Cyey, Opy = CDSDA_V (3)

in which Cy and Cp are the secant stiffness moduli for volumetric and deviatoric components, respectively.
The shape of the stress—strain curves is qualitatively plotted in Fig. 3b. Using Eqs. (3) and (la), condition
(Ib) is for the cracked state fulfilled either for: (I) Cp = 0 or for (II) ep, = 0. The first implies that the
deviatoric component on plane y undergoes softening (dotted line in Fig. 3b). Since in Bazant and Prat’s
model, for concrete, the deviatoric compressive strength is roughly 10 times greater than the volumetric
tensile strength, condition (1b) is satisfied by the second condition (¢p, = 0), i.e. the deviatoric strain
component ¢p, does not undergo softening. Consequently, from condition (II) and (la), it follows that
eny = év i.e. for uniaxial tensile fracture the model predicts lateral expansion.
Introducing Eq. (3) into Eq. (1) and denoting # = Cp,/Cy it follows:

n= —SV/SD,y- 4)

For the linear elastic stress—strain state, 5 is obtained using Eq. (2) as n = (1 —2v)/(1 + v). Analogous to
the elastic solution, to fulfill condition (I) for cracked state, # should be constant for any level of damage,
and therefore,

CD,y = WCV (5)

According to Eq. (5), condition (I) is fulfilled only when Cp , is proportional to Cy during the entire load
(damage) history. Only such stress—strain relationship for deviatoric component which satisfies Eq. (5)
yields the realistic solution for the uniaxial tension. If the relationship is different, the model predicts the
pathological lateral expansion (condition II is satisfied) or the normal stress component oy, for & =
+00 (o, = 0) does not reduce exactly to zero.

One of the consequences of the pathological model response observed in the finite element analysis is
illustrated by two simple examples. First, the unit plane stress finite element with four integration points is
loaded in uniaxial tension. The calculated normalized stress—strain curves for axial and lateral strain
components are plotted in Fig. 4a. It can be seen that before the tensile strength is reached (hardening), the
material correctly contracts in the lateral direction, however, after the onset of cracking, the model predicts
lateral expansion. At the end of the softening process, the lateral strain is the same as the axial strain i.e. the
ratio between the axial and the lateral strain is equal to one. Second, the same element is loaded in tension
and then, for a constant tensile stress lesser than the tensile strength, loaded in shear up to failure. The shear
load is applied by controlling the horizontal displacements of two upper nodes of the element. The element
is assumed to be unrestrained perpendicular to the direction of the applied shear load. Fig. 4b shows the
calculated normalized shear stress—strain curves for different levels of tensile stresses. It can be seen that the
model correctly predicts the maximum shear resistance, which decreases to zero, when the tensile stress
reaches the tensile strength. However, as soon as the shear resistance is reached, the stress—strain curves
exhibit unrealistic instability as a consequence of pathological expansion.

To formulate a more realistic microplane model for dominant tensile load, one has to account for
discontinuity of the strain field. There are principally two different ways to do this: (1) imposing the static
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Fig. 4. Bazant and Prat’s kinematic constrained microplane for dominant tensile load: (a) Axial and lateral strains for uniaxial tensile
load and (b) shear stress—strain curves for different levels of tensile load.

constraint approach at the microplane level or (2) keeping the kinematic constraint approach, but modi-
fying the microplane strain components by adopting additional constraints. The first approach would mean
that the microplane stress components are calculated as the resolved components of the total macroscopic
stress tensor. Because of the non-unique definition of the stress tensor in softening materials, as mentioned
above, it is generally difficult to work directly with the static constraint approach. Therefore, the kinematic
constraint approach should be improved.

To improve the model, Bazant et al. (1996a,b) proposed the microplane model with “‘stress—strain
boundaries” in which split/no split of normal microplane components is not fixed a priori, but decided for
each microplane individually depending on the current strain. The model basically eliminates the patho-
logical behavior; however, as shown by Jirdsek (1998), for uniaxial tension, the stress does not generally
reduce exactly to zero. In the model, the microplane components have stress limits (strengths) which are
generally a function of the macroscopic stress tensor. Since no explicit relation between these strengths and
macroscopic stress tensor exists, for general loading—unloading histories, a skip from one stress limit to the
other can occur. This may be a source of numerical difficulties when the model is used in a general finite
element code. Furthermore, Carol and Bazant (1995) proposed a plasticity type of decomposition of
macroscopic strains, in which the “plastic’” part has the meaning of crack opening and “‘elastic” part goes
into microplanes. The same authors also proposed a microplane formulation in which the concept of
damage and plasticity were introduced at the microplane level. The relations for the macroscopic plastic
strains and damage tensors are obtained as integrals of their microplane counterparts (Carol and Bazant,
1997). The plastic part of the model was formulated with split of normal components, while the damage
part was formulated without split. Loading surfaces and flow rules were defined at microplane level, and
macroscopic counterparts could also be obtained under certain conditions. Although these approaches
results in a physically correct model response, the conceptual simplicity of the kinematic constraint model is
lost. Instead of a simple uniaxial stress—strain law for each microplane, integral stress—strain dependency is
needed, and cyclic modeling appears to become more difficult.

To eliminate pathological behavior of the microplane model, in the present paper, an alternative ap-
proach is proposed. In the proposed model, which is principally based on the model of Bazant and Prat
(1988) and Ozbolt and Bazant (1992), the loss of continuity of the strain field for dominant tensile load is at
the microplane level accounted for by adopting the so-called effective microplane strain components. The
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components are calculated such that Eq. (5) is approximately fulfilled for the entire tensile load history.
Furthermore, the initial material anisotropy for possible modeling of fiber reinforced concrete is introduced
as well. The model is tested on the material and structural levels for different monotonic and cyclic load
histories and the results are compared with the available test evidence.

3. Microplane model with relaxed kinematic constraint
3.1. Basic assumptions and macro—-micro relationships

To keep the conceptual simplicity of the improved model, most of the assumptions originally introduced
by Bazant and Prat (1988) and Ozbolt and Bazant (1992) are kept the same. However, instead of working
with the microplane strain calculated from the total strain tensor (continuous strain field), for dominant
tensile load the microplane stress is calculated from the effective microplane strain. The main assumptions
are as follows:

(I) Each microplane resists normal and shear strain components (e, ér). The normal strain component is
decomposed into volumetric (ey) and deviatoric part (¢p). The resulting shear consists of two mutually
perpendicular components (ey, ex) (Fig. 2b).

(IT) Except for volumetric strain, the effective microplane strains are resolved components of the total
macroscopic strain tensor &; multiplied by function y:

en = (ep + &v)id, ev = & /3, ep = (mnje; — ev)y, (6a)

5’[‘ = 8Mﬁ}l + 8Kk, EM = m,-n(,—s,-(,-l/l, EK = k,njslllﬁ (6b)

The orientation of each microplane in Eq. (6) is characterized by the unit normal n of components n; where i
represents the components of the Cartesian coordinates x; (i=1, 2, 3).

(IIT) For dominant tensile load function, ¥ introduced in Eq. (6) relaxes the kinematic constraint. It
reflects discontinuity as a consequence of discrete tensile cracking, therefore, we call this function discon-
tinuity function. It is for each microplane individually decided whether the function applies (1 > ¢ > 0) or
not. The discontinuity function y is not chosen arbitrarily. As will be discussed later, for individual mi-
croplanes, s is related to the volumetric stress—strain relationship. In addition, to account for a smooth
transition from dominant tensile to dominant compressive load, the function is also assumed to be de-
pendent on the maximum principal stress g (tension).

(IV) For correct modeling of concrete at high confining pressures, the shear response on each microplane
is assumed to be dependent on the volumetric strain. The microplane shear components are mutually in-
dependent. Consequently, there is no co-axiality between their stress and strain components.

From known microplane strain increments, the corresponding microplane stresses are calculated as
dGV = Evd{iv, dGD = EDdSD,
(7a)
dO'M = EMdSM, dO']( = E](dS](7

where Ey, Ep, E\, Ex represent tangent moduli obtained from known uniaxial microplane stress—strain
relationships. In the present model, the relationships for virgin loading are adopted the same as proposed
by Ozbolt and Bazant (1992). They are based on the scalar damage theory and are as follows:

oy = va‘v, op = CDSD, or = CTST (7b)
with (except for volumetric compression):
Cv = Evo(1 — av), Cp = Epyo(l — wp), Cr = Erpo(l — o), (7c)
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where Cy, Cp and Cr are secant moduli with their initial values Cyy = Ev, Cpy = Epy and Cry = Ety.
The shear microplane moduli Ct denotes both components M and K. They are assumed to have the same
function. Scalar damage parameters w are adopted as:

oy =1- elev/el™

&y 0:
0: wp = 1— ei‘aD/el‘m, ep < 0: wp = 1-— ef\gD/ez\”, (7d)

ARV,

€D

N k

wr=1- elor/es|
in which es = e; when ¢y = 0 and e5 = e3 — eqey if &y < 0. Parameters ey, e,, €3, €4, m, n and k are empirical
material constants. The dependence of e¢s on the volumetric strain gy reflects internal friction which is an

additional kinematic constraint of a scalar type. For volumetric compression, there is no damage (wy = 0),
therefore, the stress—strain relationship is adopted as

ev |\ 77 &y |1
a=Eul(+[Z]) "+ 3] 7e
v vo|(l+ p + b (7e)
where a, b, p, g are again empirical constants. Note that one could also use another set of microplane curves
which can reproduce the behavior of concrete on the macro scale well. The curves from Eq. (7) for all

microplane stress—strain components are schematically plotted in Fig. 5. As can be seen, in contrast to
volumetric and deviatoric components, the shear component is assumed to be symmetric.

+0O,

tension

compression +8v

compression tension +&,

Fig. 5. Schematic plot of microplane stress—strain relationships for virgin load: (a) volumetric component (V), (b) deviatoric com-
ponent (D) and (c) shear stress—strain components (M and K).
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To generate the macroscopic stiffness and stress tensor from known microplane stress and strain com-
ponents, one has to integrate the uniaxial stress—strain laws over all the microplanes such that the stress
equilibrium between all the microplane stresses and macroscopic stress tensor is approximately fulfilled
(Ozbolt and Bazant, 1992). Due to the material nonlinearity and path dependency (cyclic loading), this has
to be done incrementally. The microplane stress increments are calculated from stress—strain relationships
(7). From these increments, the corresponding macroscopic stresses are obtained by imposing equilibrium
between macro and micro level. In the total form, the equilibrium can approximately be enforced by the
virtual work equation (Bazant and Prat, 1988) as

2
?nalz,ﬁs,:,- = /S(GN88N + ombem + ok dex ) Q2(n)dS, (8)

where n represents unit vectors normal to the microplanes. d¢;;, den, dem, Oex are small variations of the
strains on the macro and microlevels. The left-hand side of Eq. (8) represents the macroscopic work done
on the unit sphere of the material while the right-hand side represents the macroscopic work done over the
surface of the same sphere. d¢ contains small variation of the strains due to microcracking (damage) as well
as the variation of strains due to frictional plastic slip. 2(n) is a weight function of the normal direction n
that introduces anisotropy of the material in its initial state. For normal concrete we assume Q(n) = 1,
which implies initial isotropy. As will be discussed later, for some materials (fiber reinforced concrete) we
may also account for the initial anisotropy. Substituting assumption (6) into Eq. (8) we get the macroscopic
stress tensor as

3 1 1
0y = —Zn/ {n,—njav + mnjop + 3 (min; + mn;)om + 3 (kin; + kjn;)ox | (n)dS. 9)
s

The integral in Eq. (9) is linear in stress and therefore it applies on the stress increments as well.

It has been recently pointed out by Carol and Bazant (1997) that the term (n;7;) which in Eq. (9) stays
with op should actually be replaced by (n;n; — d,;/3) i.e. =6;;/3 should be added. As shown by Bazant et al.
(1998), the term has no effect on the elastic response, however, it can have an effect on the inelastic response.
The stronger the difference in the tensile and compressive deviatoric strengths, the greater will be the effect
of the term —J;;/3. The absence of the term can cause violations of thermodynamic restrictions, particularly
negative dissipation during a closed strain cycle (Bazant et al., 1998). In the present model the absence of
the term —J;;/3 is compensated by adopting the ratio between initial deviatoric and volumetric modulus to
be less than one (1 = Epy/Evo < 1) as well as taking the shear microplane strength as greater than the
deviatoric compressive strength. Moreover, the effect is also compensated by the dependency of the mi-
croplane shear resistance on the volumetric strain as well as by the discontinuity function, which, the
deviatoric and shear strain makes dependent on the total volumetric strain.

The kinematic constraint approach a priori assumes continuity of the strain field i.e. small variations of
the macroscopic strain field (8¢;;), in the sense of the smeared crack approach, are proportional to the small
variation of the microplane strain components (den, ey, 0ex). However, as soon as strain localization and
cracking (discontinuity) occurs, variation of the macroscopic strains is not proportional to the variation of
the microplane strains. This is schematically plotted in Fig. 6 and it is in the present formulation accounted
for through the effective microplane strains.

The same, as shown by Ozbolt and BaZant (1992), macroscopic tangent material stiffness tensor Ej; is
obtained by substituting Eq. (6) and incremental form of Egs. (7b)—(7e) into the incremental form of Eq. (9),

3

Eijrs = 5

1 1
nnn,nEp + gn,-n,»(srs(EV —Ep) + 3 (min; + mn;)(mng + mgn,)Ey
s

1
—+ Z (kl}’lj + kjn,)(k,nq + k_ynr)EK Q(n)dS, (10)
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Fig. 6. Virtual strain field — continuum and discontinuum.

where Ey, Ep, Ey and Ex are tangent moduli of the corresponding microplane components. The integrals
from Egs. (9) and (10) are evaluated numerically employing the following approximate formula:

4 2
T~ 63, 1
7 Z:]: (11)

in which subscript « refers to a certain discrete set of microplanes characterized by the spatial discretization
of their normals associated with points on a unit hemisphere, and X, are the weights (numerical integration
coefficients) for these directions. The meaning of Eq. (11) is that the unit sphere from Eq. (8) is approxi-
mated by a number of discrete planes (Fig. 7). According to the present experience, 21-point integration
formula (Bazant and Oh, 1986) gives sufficient accuracy. The numerical algorithm to calculate macroscopic
stress tensor g;; from known microplane stresses is the same as described by Ozbolt and Bazant (1992).

3.2. Relaxation of the kinematic constraint for tensile load

At a lower tensile load, concrete can be viewed as an isotropic elastic continuum. With increase of load,
in the weak zone, a band of microcracks forms which by subsequent loading coalesce into a crack i.e.
debonding of the material particles (rupture) takes place. In the framework of the continuum theory,
cracking is represented by the localization of strains. When the strain increases, the stress oriented in the
same direction (damage direction, direction 1 in Fig. 8) decreases. The strain components which are ori-
ented predominantly laterally to the direction of damage (direction 2 in Fig. 8) decrease approximately
elastically i.e. after the damage evolution is completed (rupture), the three-dimensional stress—strain state at

Fig. 7. Spatial discretization (approximation) of the sphere by 21 integration points (symmetric part).
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Fig. 8. Macroscopic loading-unloading of the material as a function of the damage orientation.

the beginning of loading shrinks into a uniaxial stress—strain state. This effect is essentially a structural effect
which should be accounted for in any macroscopic material model. The micromechanical models account
for this effect automatically.

Before we decide how to calculate the effective microplane strains (assumption III), we have to choose an
objective criterion for dominant tensile load. For direct tension in one, two or in all three directions,
compression-tension, unrestricted shear (no restrains perpendicular to the shear direction) with or without
tension, the volumetric strain as well as maximum principal stress are positive. Therefore, it is reasonable to
assume that the dominant tensile load exists when

ey >0 and oy > 07 (12)

where oy is the maximum principal stress. Both quantities (ey, o7) are invariant macroscopic properties. In
the linear elastic range, principal stress controls the existence of tensile load. For a fully cracked specimen,
the total volumetric strain is positive and the principal stress is close to zero. In the sense of the smeared
crack approach, strains in the direction of tensile load are large and those perpendicular to it are practically
zero (unloading) i.e. the resulting volumetric strain is positive. Moreover, the total volumetric strain in
cracked material is approximately the same as the nonelastic (‘plastic’) volumetric strain and, therefore, it
can be used as an indicator of tensile damage.

Unlike the models proposed by Carol and Bazant (1995, 1997), the use of the effective strains introduced
in Eq. (6) is not motivated by the theory of plasticity. Namely, the same as in the plasticity, the total
microplane strain component &y, can formally be decomposed into nonelastic (relaxed) part &y, and the
stress effective part emp efr:

Emp = Emp,r + Emp eff 5 Empeff = 8mp$a (13)

where mp denotes the corresponding microplane component (D, M, K). The actual motivation for the use
of discontinuity function are physical arguments discussed above and Eq. (5) which is related to a simple
two-plane microplane model discussed in Section 2. According to Eq. (5), the deviatoric secant moduli Cp
should be for the entire tensile load history proportional to the volumetric secant moduli Cy. Using (5) and
the microplane stress—strain relationships (7), the deviatoric microplane stress component for virgin load is
calculated as

op = Cpepe”v/al” (14)
where ¢p denotes total deviatoric strain. Eq. (14) can be rewritten as

op = Cpéper  OF  0p = Cpfrép,
epet = ép¥, Cper = Cpy with y = e7lv/al”,

(15)
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where Cpr can be interpreted as an effective secant moduli chosen such that Eq. (5) holds. According to
Eq. (15), for virgin loading, the deviatoric stresses can formally be calculated by the use of the effective
strains or alternatively using total deviatoric strains ep multiplied by the effective secant deviatoric moduli
Cp.ir , Which varies from Cp (initial state) to 0 (crack state) and is proportional to Cy. In both cases the
final result is the same i.e. # remains constant for the entire tensile load history what prevents pathological
model response. The discontinuity function Y has to be of the same type as a function which controls the
volumetric secant modulus Cy Eq. (7¢). If we would use an arbitrary function, the pathological behavior
could be eliminated, however, the macroscopic tensile stresses at crack state would generally not reduce to
Zero.

Analogous to the deviatoric component, the same discontinuity function is used for microplane shear
components. Practical effect of the discontinuity function for deviatoric and shear components is relaxation
of the material in the direction perpendicular to the principal damage direction. This agrees with the
physical arguments discussed at the beginning of this section. By replacing the total deviatoric strain
component with the effective one, the final result is similar to that for the model with the concept of stress
boundaries (limit stress, Fig. 3b) proposed by Bazant et al. (1996a,b).

To account for the orientation of tensile dominant damage (crack orientation) the activation of dis-
continuity function on the individual microplanes is controlled by the deviatoric microplane strain com-
ponent. As demonstrated in Section 2, at the onset of cracking (localization of strain), the microplane which
is perpendicular to the crack surface has negative deviatoric strain (¢p = ey — &v; en — 0 and ¢ < 0) i.e. the
plane need to be unloaded (relaxed). On the contrary, the microplane which is parallel to the crack surface,
has positive deviatoric strain (ep = en — &y; &én > év; en > 0 — gp > 0) and it is loaded in tension. Con-
sequently, depending on whether the microplane is loaded or unloaded, the total strain for individual
deviatoric and shear components need not or need be multiplied by discontinuity function.

3.2.1. Discontinuity function for the normal microplane strain component

According to Eq. (6), the normal microplane strain component is decomposed into volumetric and
deviatoric part. Although the volumetric strain component for individual microplanes could principally be
split into the effective and noneffective part, because of the following reasons the volumetric strain is not
split: (1) the volumetric strain is invariant with respect to the microplane orientation, (2) the static con-
straint on volumetric stress for tensile load is automatically fulfilled ey — 400, 0y — 0), (3) it serves as a
macroscopic indicator for tensile dominant damage and (4) in the total (not decomposed) form, it is useful
for monitoring of the stress—strain path of concrete under tensile cyclic loading.

As discussed above, negative deviatoric strain component means that the microplane normal is oriented
close to the direction which is orthogonal to the damage direction. Therefore, when damage increases the
deviatoric microplane stress and strain components for these directions should approximately relax (un-
load) to zero. To account for the above effect, the discontinuity function for the deviatoric strain is taken as

&p < 0, ey > (), 01 > Ol min lp = ef\f(rr])cv/e]\"” (163)

>0 =1 (16b)

The discontinuity function in Eq. (16a) is taken as discussed before, i.e. it has principally the same shape as
the microplane stress—strain relationship for volumetric tension. Function f{ay) in Eq. (16a) (Fig. 9) is
introduced to assure a smooth transition from discontinuous state (tensile crack) into continuous state
(crack closure and subsequently loading in compression). Based on the fit of the cyclic test data, the
function is adopted as



J. Ozbolt et al. | International Journal of Solids and Structures 38 (2001) 2683-2711 2695

a) v
10 SY_I_S_(_)-I_.Tin
0 (M
+Ey
continuum discontinuum
< Q >
!
8]
b) f(Gi)
1.0
/0
i
0-I,min +0)
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in which gy mi, 18 a small negative limit value of the maximum principal stress.

For the planes which are oriented predominantly in the damage direction (¢p > 0), total strain per-
pendicular to the crack surface yields infinity and the corresponding stress reduces to zero. Consequently,
for these microplanes &y — 400, oy, op, or — 0 and ¢p — +oo with y = 1.

3.2.2. Discontinuity function for the shear microplane strain components

The microplane shear resistance depends on the normal microplane stresses. For positive normal stress
(tension), after the onset of cracking, the shear resistance reduces to zero. On the contrary, for negative
normal stress (compression), the microplane offers resistance over shear softening regime mainly through
friction and it generally does not reduce to zero. Typical situation when this occurs is compression or shear-
compression softening where microplane shear resistance predominantly relies on shear-friction due to the
effect of normal compressive stresses. For these stress—strain states concrete is modeled as a cracked con-
tinuum. However, for dominant tensile damage, independent of the microplane orientation, the shear strain
and stress components relax to zero. Consequently, the shear discontinuity function for individual mi-
croplanes are

ey > 0, gy > O1,min l// = e—|_f'(m)sv/el\"’ (183)

else: Y =1 (18b)

As discussed before, function (18) is the same as the one for the deviatoric component in Eq. (16).

The discontinuity function for microplane shear stress component plays an important role by modeling
of shear failure. When shear fracture is modeled by the three-invariant plasticity based models for concrete
(Willam et al., 1999), the shear damage unrealistically spreads over a few elements. On the contrary, in the
present microplane model s enables localization of damage in a row of single finite elements. Consequently,
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smeared fracture modeling of concrete becomes closer to the discrete crack approach and therefore more
realistic.

3.3. Unloading, reloading and cyclic loading

To model unloading, reloading and cyclic loading for general triaxial stress—strain states, loading—
unloading rules for each microplane stress—strain component are introduced. In the present model, these
rules are a simplification of the rules introduced by Ozbolt and Bazant (1992).

The virgin loading for each microplane strain component occurs if

eAe 20 and (¢ — émax)(e — &mm) =0, (19)

where &y, and &y, are the maximum and minimum values of the effective microplane strain that have
occurred so far; otherwise unloading or reloading takes place. In contrast to virgin loading, for cyclic
loading the stress—strain relations must be written in the incremental form:

do = Ede, (20)

where E represents unloading-reloading tangent moduli which is generally defined as

11—«
E=FEyo+o ,
&E— &1

(1)

¢<e,, & =0.

In Eq. (21), 6, and ¢, denote the positive or negative peak stress and the corresponding strain for each
microplane component using values ¢,+, ¢,+ and o,-, g,- for positive and negative peaks, « and f are
empirically chosen constants between 1 and 0 and Ej is initial elastic stiffness moduli for the corresponding
microplane component.

The loading—unloading-reloading rules for microplane components are schematically plotted in Fig. 10.
Fig. 10a shows cyclic rules of the volumetric stress—strain component. In the compressive part the loading—

(a) (b)

P'(cp.&y)

Fig. 10. Loading—unloading and reloading rules for microplane strain components: (a) Volumetric component and (b) deviatoric
component.
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unloading modulus is defined by the initial elastic modulus Ev . For tension the unloading and reloading
moduli are controlled by Eq. (21). Typical load cycle for virgin loading in tension, unloading in com-
pression and reloading in tension is O—-P-A-B-C-D-A-B-E-F-O-A. Virgin loading in compression,
unloading and subsequent loading in tension follows the path: O-A’-B'-D’-A’ or O-A’-B'-O-P-A-B-E-
F-O-A. For the deviatoric compression and tension similar rules as those for the volumetric tension are
employed (Fig. 10b). The loading—unloading-reloading rules for shear are principally the same as for the
deviatoric component.

From the bond cyclic experimental evidence, in which the shear damage plays an important role, it is
known that loading in one direction causes damage which is manifested by degradation of shear strength
and stiffness in the opposite direction (Eligehausen et al., 1983; Balazs, 1991). To account for this effect, the
shear microplane component is modified such that the microplane shear stiffness moduli £y and Ex are
multiplied by an additional damage function:

g = e~ 124/ (22)

where A represents accumulated microplane shear energy dissipation and A, is a constant representing the
area under the monotonic (undamaged) microplane shear stress—strain curve. The above equation has been
proposed by Eligehausen et al. (1983) and it is based on a large number of cyclic bond test data.

The response curves, shown later in the numerical examples, provide justification of the foregoing cyclic
rules. The fact that the general three-dimensional cyclic response results from simple one-dimensional cyclic
rules is an important feature of the microplane material model. These relatively simple rules help us to
understand better the macroscopic material response and to correlate them with the material structure and
macroscopic stress and strain tensor.

3.4. Anisotropy

Generally, two kinds of anisotropy exist: (1) Initial anisotropy and (2) damage induced anisotropy. The
initial anisotropy is a consequence of the material structure, i.e. by nature, the material has different
properties in different directions. Damage induced anisotropy is a consequence of damage localization in a
particular direction and it is a consequence of loading. In the microplane model damage induced anisotropy
is automatically taken into account through the microplane stress—strain dependent constitutive laws. To
account for the initial anisotropy there are two possibilities. The first, a relatively simple one, is setting
function Q(n) in Eq. (8) to be dependent on the orientation of the normal of each microplane relative to the
given weak direction w (Fig. 11). From the statistical point of view, it represents a distribution function of
the frequency of the directions associated with the microplane normal n. When the microplane direction
coincide with the weak, direction Q(n) = 1 and if it is perpendicular to it Q(n) = 0. Once the function is
known, the anisotropy is automatically taken into account by introducing Q(n) into Eq. (9). Since the
volumetric stress is independent of the microplane orientation (volumetric isotropy) Eq. (9) is rewritten as

w

i

Q(n)

1

0 90

Fig. 11. Initial anisotropy — weak direction defined by angle ¢.
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3 1 1
O-ij = O-VSij + —zn/ {(n,njO'D + 5 (m,n] + mjnf)O'M + z (k,nj + kj}’li)GK Q(n)dS (23)
N

0jj = 0V + 0ijD-

This method has been used for modeling of clay anisotropy (Bazant and Prat, 1987) and it is also im-
plemented in the present microplane model. As pointed out by Bazant and Prat (1987), the main difficulty is
to identify Q(n) which has to be obtained from experiments. In the present model, the following empirical
function is adopted:

Q(n) = (mw;) (24)

where n; stands for the components of the microplane normal n, w; are given components of the weak
direction w and y is a parameter > 1.

The second, more general possibility (Prat and Gens, 1994) takes advantage of the microplane formu-
lation in which the uniaxial constitutive laws are defined for each plane of different orientation. The ma-
terial anisotropy results automatically when these laws are adopted as a function of the microplane
orientation. Therefore, the tangent moduli from (7a) have to be rewritten as

Eyv = Ey(ev,n), Ep = Ep(ép, év,n),

(25)
Em = Em(éwm, v, v, D), Ex = Ex(éex, év, 0y, n).

The procedure to calculate the material macroscopic relations is the same as that described before. Note
that in this formulation, the volumetric stress on each microplane is not the same i.e. the volumetric an-
isotropy is assumed.

As shown by Prat and Gens (1994), both the above discussed approaches offer a number of different
possibilities for modeling material anisotropy, not only for the nonlinear material behavior, but for
modeling elastic anisotropy as well. For instance, with Ey = Ey(n), Ep = Epy(n), Em = Emo(n) and
Ex = Ex(n), the elastic anisotropy can analytically be expressed by introducing these explicit relations into
Eq. (10).

In the present paper, it is discussed how the initial anisotropy is introduced into the model. The im-
plemented anisotropy will be discussed in more details in a separate paper. Therefore, the calibration as well
as numerical examples related to the initial anisotropy are out of the scope of the present paper.

3.5. Material parameters and Poisson’s ratio

The relation between macro and micromodel parameters at initial elastic stage is obtained by matching
Eq. (8) with Hook’s law (Bazant and Prat, 1988) which leads to Young’s modulus (Y) and Poisson’s ratio

()
5-2n—3¢ _ Epy _Erp

Y =(1—-2v)Eyy, V= =— =—_=. 26
( JEvo 10 + 25 + 3¢ 1 Evo Evo (26)
After inverting these relations, it follows that
1 /5(1—=2v)
=—-| ————=—21n | Evy. 2
T.0 3< Tty '7) V.0 (27)

The above relations are obtained assuming initial isotropy. The same can be obtained for initial anisotropy.
For more details see Prat and Gens (1994).

By fitting test data, it is convenient to use known (measured) values of Y (Young’s modulus) and v
(Poisson’s ratio) as basic material parameters. The value of the ratio n = Ep/Ev can be chosen as any real
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positive value between 0 and 1 (Bazant and Prat, 1988). Later, however, it was shown that there is some
preferred value, 7 = (1 — 2v)/(1 + v), giving special properties with respect to the formulation of damage
tensors (Carol et al., 1991; Carol and Bazant, 1997). This value is actually the same as the one obtained for
simple two-plane linear elastic microplane model loaded in uniaxial tension (Section 2). The value is op-
timal for dominant tensile damage; however, wide experience with the use of the model indicates n = 0.8 to
be optimum for most cases.

Initial Poisson’s ratio and Young’s modulus for concrete are known in advance. The model parameters
(a, b, p, q, e1, e, e3, ey, €5, m, n, k) are the same as adopted in Ozbolt and Bazant (1992). For normal
concrete, most of the parameters can be set as constant values and only few of them have to be obtained by
fitting uniaxial compression and uniaxial tension test data. Poisson’s ratio v satisfies the well-known
thermodynamic restriction, namely —1 < v < 0.5. This follows from Eq. (19), where for # — 0 and ¢ — 0,
v — 0.5. For 1 — oo or £ — oo or both, v — —1 i.e. the present microplane model for initial elastic state (no
damage) covers the entire range of v. For cyclic modeling, two additional parameters o and f3, the same for
all microplanes, are introduced in Eq. (21). Their optimal values are obtained by fitting a set of cyclic test
data (uniaxial tension, uniaxial compression and shear). According to the present experience with normal
concrete, both parameters may be taken to be the same and constant for all concrete types.

To make use of the model in practical finite-element applications more comfortable, a special computer
program is written, which, for basic macroscopic concrete properties (Young’s modulus Y, Poisson’s ratio
v, uniaxial tensile strength f;, uniaxial compressive strength f., concrete fracture energy Gr and concrete
compressive fracture energy G¢) automatically generates the microplane model parameters.

4. Verification of the model

To verify the material model for concrete, one has to compare experimental results with the model
response. Due to the fact that each test specimen is a structure which possibly exhibits size effect on the peak
load and post-peak response, the calibration and verification of the macroscopic material models for quasi-
brittle materials is difficult. On the macroscale, cracking phenomena are not a point but a volume property.
Consequently, when the model response is compared with the test data, the model parameters need to be
related to the characteristic material volume and the material properties should be filter-out from the test
data. Otherwise, the model calibration is meaningless. Therefore, depending on the problem type it is not
always sufficient to compare only the constitutive law with the test data since in the tests, the structural
effects could possibly be significant.

The present model was recently implemented into the two- and three-dimensional finite element code
and it has been so far used in a number of structural applications. To prevent spurious mesh sensitivity in
the finite element calculations, the model was coupled with the regularization procedure of local (crack
band) and nonlocal type. Two- and three-dimensional analysis of concrete and reinforced concrete struc-
tures were performed for problems such as: tension failure, compression and shear failure, beam-column
connections (monotonic and cyclic load), splitting failure, anchor pull-out, punching and other. The dis-
cussion of these results is out of the scope of the present paper, therefore, for more details refer: Ozbolt,
1995; Ozbolt et al. 1997, 1998, 1999a,b, 2000; Eligehausen and Ozbolt, 1998; Li et al., 1998.

4.1. Effect of discontinuity function and stress locking

Before the model, is compared with the typical test data, let us first show that for dominant tensile load,
the model predicts correct response. For this purpose, the same as for the original Bazant and Prat’s mi-
croplane model, a single finite element (Fig. 4) is first loaded in tension and subsequently, for different level
of constant tensile load, it is loaded by shear. Moreover, it is also checked whether the model for the well
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known Willam’s test (Willam et al., 1987) yields physically correct results. Finally, it is demonstrated that in
the finite element analysis, the model does not cause locking of stresses.

No doubt, it would be more appropriate to test the model on the constitutive level without using finite
element. In some cases, finite element could not exactly reproduce the material response. Here we chose the
finite element because it is relatively easy to reproduce a complicated stress—strain histories, in which ro-
tating of the principal stress—strain directions takes place during the loading process. If for such a case, the
model response is physically correct, what is the main purpose of these tests, it would most probably also be
correct on the constitutive level.

4.1.1. Tension and tension-shear test

Fig. 12a shows the calculated stress—strain curves (lateral and axial directions) for uniaxial tensile load.
As can be seen, in contrast to the standard kinematic formulation of the model, the new model in lateral
direction predicts contraction for the entire load history. This can also be seen from Fig. 12b which shows
the ratio between lateral and axial strains (with negative sign) at different load levels. Obviously, by increase
of damage in the axial direction the lateral strain decreases asymptotically to zero.

In Fig. 13a, the calculated shear stress—strain curves are plotted for different levels of tensile stresses. As
can be seen, in contrast to the original kinematic microplane model (see Fig. 4b), independent of the tensile
stress level, the shear stresses are always correctly reduced to zero. The shear strength envelope (yield
surface) for different axial tensile stresses, varied in the range of 0 to f; (uniaxial tensile strength), is plotted
in Fig. 13b. As can be seen, it decreases exactly to zero with increase of tensile stresses up to f;.

4.1.2. Willam’s test with rotation of principal directions

To check whether the proposed model predicts consistent solution for tensile dominant load with
significant rotations of principal stresses, Willam’s test is performed (Willam et al., 1987). In this test,
uniaxial tension is applied first in the x direction (plane stress state), reaching the onset of tensile crack-
ing. Subsequently, strain increments are prescribed to all degrees of freedom proportionally to Ae =
[Asxx,AsW,Ayw]T = [0.50,0.75,1.00]". This implies increments of tensile strain for both principal axes,
accompanied by a rotation that reaches asymptotically the value of 38°, measured from the x direction. The
used material parameters are: ¥ = 34000 MPa, v = 0.18, f, = 2.90 MPa, f. = 38.0 MPa and fracture energy

(a) (b)
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Fig. 12. Uniaxial tension: (a) axial and lateral strains as a function of the relative axial stress and (b) ratio between lateral and axial
strain as a function of the axial deformation.
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Fig. 14. Willam’s test in rotating tension/shear.

Gr = 0.075 N mm/mm? (assumed crack band =60 mm). The evolution of a,, and o, is shown in Fig. 14.
For comparison, uniaxial stress—strain response is also plotted. As can be seen from Fig. 14, the model
prediction is physically correct and qualitatively the same as, for instance, the response obtained by the
multicrack model (multisurface elastoplastic formulation; Carol and Bazant, 1995). Compared to the
uniaxial tensile response, the multidirectional damage reduces the post-peak capacity in x direction and for
large positive strains (tension) all stresses exactly reduce to zero.

4.1.3. Stress-locking test

An important feature of the macroscopic material model for smeared fracture analysis is that the model
should not exhibit stress locking. The stress locking may be observed when the finite elements are not
parallel with the crack direction. The problem is well known from the finite element fracture analysis when
the so called smeared crack models are used (rotated or fixed crack approach, for more details see Jirasek
and Zimmerman, 1998). To check if the present model is stress-locking free, a simple three-point bending
notched beam is analyzed within the frame work of the crack-band theory (Bazant and Oh, 1983). The
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Fig. 15. Three-point bending test: (a) crack pattern (dark zone) in terms of maximum principal strains and (b) mid-span load-dis-
placement curve.

standard fracture properties for normal concrete are adopted. Fig. 15a shows the crack pattern for rela-
tively coarse irregular mesh in terms of the maximum principal strains. The calculated load-midspan dis-
placement is plotted in Fig. 15b. As can be seen, although the mesh is irregular, the load reduces almost
exactly to zero i.e. there is no stress locking.

4.2. Comparison with standard test data

The model response for concrete is compared with the typical test data available from the literature.
These tests include: (1) uniaxial compression tests of van Mier (1984, 1986), see Fig. 16; (2) uniaxial

(a) ©
50
O van Mier (1984)
o X van Mier (1984)
= 40
% -------- constitutive law
40 %‘ — L=5cm
30
8 L=20cm
)]

Axial stress [MPa]

20
..x.h
—— Model prediction 104
T X van Mier 1984.
T T T © ) T T T 1 0 T y i T j i T
-0.010 -0.005 0.000 0.005 0.010 0.000 0.002 0.004 0.006 0.008 0.010 0.012

Strain Axial strain

Fig. 16. Uniaxial compression tests of van Mier (1984) and model prediction: (a) material model level (point property) and (b)
modeling of the test specimen using three-dimensional finite elements in the framework of the crack band theory.
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Fig. 17. Uniaxial compression monotonic and cyclic test of Sinha et al. (1964) and the model prediction — three-dimensional finite
element simulation.

compression tests for monotonic and cyclic loading of Sinha et al. (1964), see Fig. 17; (3) uniaxial tensile
tests for monotonic and cyclic loading of Reinhardt and Cornelissen (1984), see Fig. 18; (4) biaxial tension-
compression tests of Kupfer et al. (1969), see Fig. 19 and shear-compression failure envelope measured by
Bresler and Pister, (1958), see Fig. 20 and Goode and Helmy (1967), see Fig. 20; (5) cyclic shear test of
Eligehausen et al. (1983), see Fig. 21 and (6) monotonic and cyclic triaxial compression test data of US
Army Engineers Waterways Experiment Station (USAE-WES, 1994, Figs. 22 and 23; taken from Bazant
et al., 1996a,b).

Generally, the microplane parameters were calibrated such that e; and m were obtained from the fit
of the uniaxial tensile test, e, e3, n and k are obtained from the uniaxial compressive test data with the
assumption that e¢; and m are independent of the parameters e,, e3, n, k. The ratio between the initial
deviatoric and volumetric moduli is assumed to be n = 0.8-1.0. The parameter ¢4, which controls the
normal-shear interaction on microplanes, is taken as constant and e; = 4. The volumetric compression is
controlled by parameters «, b, p, q. They are assumed to be constant and are obtained by the fit of the
volumetric compression test data.

Fig. 16 shows the results of the uniaxial compression tests of van Mier (1984, 1986). The results are
compared with the model prediction. The plotted stresses and strains are average values over the specimen
height. Three different heights (%) of the test specimen were considered (2 = 50, 100 and 200 mm). The
material model is calibrated based on the test data of the smallest specimen (2 = 50 mm). The basic material
properties were approximately the same as in the experiment: ¥ = 45000 MPa, v = 0.18, uniaxial tensile
strength f, = 3.8 MPa, uniaxial compressive strength f. = 32 MPa. The corresponding model parameters
are: e¢; = 0.00010, e; = 0.0010, e3 = 0.0012, m = 1.0, n =0.9, £k = 0.9, = 0.8. Fig. 16a shows the model
prediction and the corresponding experimental results for the specimen height 2 = 50 mm.

The structural effect which was observed in the experiment is also studied. In the three-dimensional
numerical simulation two different specimen sizes were considered (2 = 50 and 200 mm). The size of the
finite elements was chosen such that the concrete fracture energy Gr = Asc, with 4, area under the uniaxial
tensile stress—strain relationship and ¢, crack band width (approximately the average size of the adopted
finite element). To assure the objectivity of the analysis with respect to the element size, the size of the
elements was the same in both examples. Plane stress finite element analysis is carried out assuming a few
weak elements in the mid of the specimen (tensile strength is reduced for about 10%) in order to initiate the
localization of damage and account for the nonuniformity of the stress field as a consequence of concrete
heterogeneity. Fig. 16b shows the comparison between the experimental results and the model prediction.
Similar to the tests, the analysis shows no significant structural effect in the pre-peak regime and strong



2704 J. Ozbolt et al. | International Journal of Solids and Structures 38 (2001) 2683-2711

(a) (b)

3
rrrrrrrrrrr Reinhardt et al. (1984) o [N/mm?]
1 /TN 000 - Monotonic model response .
— ——— Cyclic model response z f ‘ i
© 2 | Bx0epmys
[a )
S 2
0] 15| 5|
o
o M1l
WreoZ A 7 —=—|
0 T T T T T 0 20 ) 60 80 100 120
0.00 0.01 0.02 0.03 Slpnd
Displacement [mm]
(c) (d)
3 ol NImm?]

rrrrrrrrrr Reinhardt et al. (1984)

----- Monotonic model response ' ]’h‘

—— Cyclic model response

6204 pmjs

g JThe
= . 15 "l
2 S m% .
£ - 10
K — . >
! os) Vi
o) 0.02 03 - e S
/ Displacement [mm] o /%/%éﬂ
-1 - VA=A
[+] 20 0 0 80 1

12
6(um)

Fig. 18. Uniaxial tensile monotonic and cyclic tests of Reinhardt and Cornelissen (1984) — model prediction and test results for: (a,b)
loading, unloading close to zero and reloading, (c,d) loading, unloading in compression (5% of uniaxial compressive strength /) and
again reloading, (e.f) loading, unloading in compression (25% of f. ) and again reloading.

structural effect on the post peak response. For comparison, the response with no structural effect (con-
stitutive law) is also plotted. As can be seen, the pre-peak response is nearly the same as in the FE analysis,
which means no structural effect is present, however, the post-peak response is size dependent. Fig. 16b
indicates a good agreement between the test and analysis.

In Fig. 17, the test data (Sinha et al., 1964) and calculated curves for uniaxial cyclic compression are
shown and compared. Since the post-peak response is not material but structural property, three-dimen-
sional finite element analysis (1/4 of the cylinder test specimen was modeled) is carried out. The model
parameters were calibrated by fitting the results of monotonic load by the three-dimensional FE simulation.
They were set as ¥ = 27500 MPa, v =0.18, f, =2.35 MPa, f. =24.5 MPa. The corresponding model
parameters are: e; = 0.00007, e; = 0.0013, e3 = 0.0015, m = 1.0, n = 0.82, k = 0.82, n = 0.8. Fig. 17 shows
a good agreement between the test and calculated data. For instance, the calculated cyclic response (en-
velope) approximately follows the monotonic response, same as that observed in the test. Furthermore, as
in the experiment, by unloading and repeated reloading, the drop of the peak stresses was observed.

The test results of Reinhardt and Cornelissen (1984) for uniaxial tensile monotonic and cyclic loading
are compared with the model prediction. Three different loading—unloading regimes were employed:
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Fig. 19. Biaxial principal stress failure envelope, test data of Kupfer et al. (1969) and the model prediction.

(a) Loading in tension, unloading close to zero stress and reloading in tension; (b) loading in tension,
unloading into compression up to approximately 5% of the uniaxial compressive strength and reloading in
tension and (c) loading in tension, unloading in compression up to approx. 25% of the uniaxial compressive
strength and reloading in tension. For simplicity reasons, the analysis was carried out on a unit three-
dimensional finite element. In the experiments, the strains were measured over the specimen length of
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Fig. 23. Hydrostatic cyclic loading conditions — test data (USAE-WES, taken from BaZzant et al. (1996)) and the model response.

25 mm. Based on the test report, the material model parameters were set as: ¥ = 34700 MPa, v = 0.18,
fi = 2.6 MPa, f. = 44.5 MPa. The corresponding model parameters are: e¢; = 0.000072, e, = 0.0022, e; =
0.0025, m =1.0,n = 1.0, k = 1.0, n = 1. Fig. 18 shows the measured and calculated stress—strain curves. As
can be seen, for all load combinations, the model predicts similar response as observed in the experiments.

Two dimensional test failure data (tension—tension, tension—compression and compression—compres-
sion, see Kupfer et al. (1969)) and compression—shear failure envelope (Bresler et al., 1958 and Goode and
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Helmy, 1967) are shown in Figs. 19 and 20. The material model parameters were approximately the same as
in the experiments: (a) tests of Kupfer et al.: ¥ = 30000 MPa, v = 0.18, f, = 2.9 MPa, f. = 32.4 MPa; the
corresponding model parameters are: e; = 0.00008, e; = 0.0012, e3 = 0.0015, m = 1.5, n=1.0, k = 1.0,
n = 1.0; and (b) compression—shear test: ¥ = 30000 MPa, v=0.18, f, = 1.8 MPa, f. =31.8 MPa; the
corresponding model parameters are: e; = 0.00005, e, = 0.0018, e; = 0.0020, m = 1.5, n = 1.5, k= 1.5,
n = 0.95. As can be seen from Figs. 19 and 20, the agreement between the model prediction and the test
data is good.

Furthermore, the model response for monotonic and cyclic shear load with prevented dilatancy (simple
shear) was checked. Such a load combination approximately corresponds to the pull-out of a ribbed steel
bar from a concrete block. Therefore, the model prediction is compared with the experimental results of
Eligehausen et al. (1983). The material properties were set as follows: ¥ = 25000 MPa, v = 0.18, f; = 2.75
MPa, f.=28.0 MPa. The corresponding model parameters are: e; = 0.00006, e, = 0.0008, e; = 0.0010,
m = 0.50, n = 0.50, £ = 0.50, n = 0.8. The constitutive law for cyclic shear response, once with and once
without accumulated cyclic damage with the use of Eq. (22), are shown in Figs. 21a and, b. In Fig. 21c, the
model response is compared with the test data. As can be seen, the prediction agrees well with the ex-
perimental results.

Finally, the model was calibrated and checked for triaxial compression load using the test data obtained
at USAE-WES (1994) (taken from Bazant et al. (1996)). The concrete properties were: ¥ = 35000 MPa,
v =0.18, f. = 45.5 MPa and the corresponding model parameters are: e; = 0.0001, e; = 0.002, e; = 0.0022,
es=4.0, m=1.0, n=0.65, k£ =0.65 and n = 0.8. Fig. 22 shows a good agreement between the experi-
mental results and the model predictions. In addition, Fig. 23 shows the comparison between the model
response for hydrostatic loading—unloading case and the corresponding test results. As may be seen the
agreement is again good.

For practical applications, Young’s modulus and Poisson’s ratio are assumed to be concrete macroscopic
properties and the model parameters are adopted as follows. From volumetric compression test a set of
parameters is obtained: @ = 0.005, » = 0.043, p = 0.75, ¢ = 2.00 and e4 = 4.0. These parameters are taken
as constant and independent of the concrete type. Parameters ¢; and m are obtained by fitting into the
uniaxial tensile stress—strain relationship, both control tensile strength and the area under the uniaxial
tensile stress—strain curve. The parameters e,, e, n and k control the uniaxial compressive strength as well
as the area under the uniaxial compressive constitutive law. Based on the fit of a number of test data the
following is adopted: e, = e3 and k& = 0.85xn. The optimal value for the ratio between the initial deviatoric
and volumetric modulus is found to be n = 0.8. In total, besides Young’s modulus and Poisson’s ratio, there
is only four independent model parameters. The parameters which control the cyclic response of the model
Eq. (21) are constant, independent of the concrete properties and the same for each microplane strain
component (Table 1). All model parameters can physically be interpreted, however, there is no explicit
relation with concrete macroscopic properties and therefore they have to be obtain by fitting of the test
data.

Table 1
Model parameters for cyclic load control
Strain component o,e< gy o, > & p
Volumetric Positive 1.0 0.1 0.2
Negative 1.0 - -
Deviatoric Positive 1.0 1.0 0.2
Negative 1.0 1.0 0.5
Shear Positive 1.0 1.0 0.5

Negative 1.0 1.0 0.5
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5. Conclusions

The present microplane model is the macroscopic three-dimensional material model for concrete. The
model is aimed to be used for modeling of damage and fracture phenomena in concrete and reinforced
concrete structures loaded under general three-dimensional state of stresses and strains.

The simplest and computationally most efficient form of the model formulation is based on the kine-
matic constraint approach which, however, in combination with realistic stress—strain relationships for
concrete leads to pathological model response for dominant tensile load. It is demonstrated that the main
reason for pathological behavior of kinematic constrained microplane (Bazant and Prat, 1988) subjected to
tension is related to the split of the normal microplane component into volumetric and deviatoric part and
not to the kinematic constraint itself. Consequently, the improved model can also be based on the kine-
matic constraint approach.

The improvement of the model is accomplished by the relaxation of the kinematic constraint for
dominant tensile load, i.e. on the microplane level, the kinematic constraint is relaxed by splitting of the
microplane strain component into the effective and relaxed part. The split is controlled by the discontinuity
function which depends on the total volumetric strain and maximal principal stress. The physical back-
ground of the concept is based on the fact that for the localization of tensile damage, the stresses and strains
on the microplanes which are perpendicular to the damage (crack) direction approximately relaxed to zero.
It is demonstrated that the new model predicts physically correct results.

The conceptual simplicity of the new model is preserved, i.e. for the fixed set of microplanes and for the
already defined uniaxial microplane stress—strain relationships, the microplane stresses are calculated di-
rectly from effective microplane strains. Using relatively simple cyclic rules on the microplane level, the
macroscopic cyclic response for any three-dimensional stress—strain state is automatically brought out.
Moreover, it is shown that the model can relatively easy account for the initial anisotropy.

Comparison with the test data shows that the model is able to realistically predict concrete response for
different stress—strain combinations (tension, compression and shear) as well as for cyclic load histories. In
the finite element implementation, the model does not exhibit stress locking. Same as that for any mac-
roscopic model for quasi-brittle materials, to prevent localization of damage into a zero volume and to
assure mesh objective results of the smeared fracture finite element analysis, the model has to be coupled
with the so-called localization limiter (crack band approach or higher order methods).

In general, the model has 15 parameters. Although these parameters have physical interpretation, none
of them is explicitly related to the macroscopic material properties of concrete. Consequently, the cali-
bration is empirical and based on the available experimental data. For normal concrete, most of the pa-
rameters can be taken constant i.e. besides basic macroscopic concrete properties (Young’s modulus and
Poisson’s ratio) only four additional parameters need to be set by fitting into test data. For practical ap-
plications, the computer code has been written which for given macroscopic concrete properties auto-
matically generates the microplane model parameters.
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